Class XI - MATHEMATICS

Chapter 2 – RELATIONS AND FUNCTIONS

Module -1/2

By Smt. Mini Maria Tomy PGT Mathematics AECS KAIGA

Distance Learning Programme: An initiative by AEES, Mumbai

Cartesian Products of Sets

Given two non-empty sets A and B. The cartesian product A × B is the set of all ordered pairs of elements from A and B, i.e., A × B = { (a, b) : a ∈ A, b ∈ B }

Example: Let A ={1,2} and B ={ a, b, c}. Find A × B.

Solution:

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

<u>Note</u> :

Ø

- \blacktriangleright If either A or B is an empty set, then , $A \times B = \emptyset$
- If A and B are non-empty sets and either A or B is an infinite set, then so is A × B.
- Two ordered pairs are equal, if and only if the corresponding first elements are equal and the second elements are also equal.

Example: If , (a - 3, b + 2) = (4, -2), find the values of a and b.

a - 3 = 4 and b + 2 = -2. Therefore, a = 7 and b = -4.

Note

- \succ if n(A) = p and n(B) = q, then n(A × B) = pq.
- $\succ \text{ In general, } A \times B \neq B \times A$
- $A \times A \times A = \{(a, b, c) : a, b, c \in A\}$. Here (a, b, c) is called

an ordered triplet.

>A × (B ∩ C) = (A × B) ∩ (A × C) and A × (B ∪ C) = (A × B) ∪ (A × C) > The Cartesian product $\mathbf{R} \times \mathbf{R} = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in \mathbf{R}\}$ represents the coordinates of all the points in two

dimensional space.

> The cartesian product $\mathbf{R} \times \mathbf{R} \times \mathbf{R} = \{(\mathbf{x}, \mathbf{y}, \mathbf{z}) : \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{R}\}$ represents the coordinates of all the points in threedimensional space. Example : If $P = \{a, b\}$ and $Q = \{x, y\}$, find $P \times Q$ and $Q \times P$. Are these two products equal? Solution: $P \times Q = \{(a, x), (a, y), (b, x), (b, y)\}$ and $Q \times P = \{(x, a), (x, b), (y, a), (y, b)\}$ The pair (a, x) is not equal to the pair (x, a). Therefore $P \times Q \neq Q \times P$.

Example 4: Let $A = \{1, 2\}, B = \{3, 4\}, C = \{4, 5\}$

Verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Solution: $\mathbf{B} \cap \mathbf{C} = \{4\}$.

Therefore, $A \times (B \cap C) = \{1,2\} \times \{4\} = \{(1,4), (2,4)\}$(1)

Also, $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\},\$

 $A \times C = \{(1, 4), (1, 5), (2, 4), (2, 5)\}$(2)

Therefore, $(A \times B) \cap (A \times C) = \{(1,4), (2,4)\}$

Hence, from (1) & (2), we get, $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

<u>Relation</u>:

A relation **R** from a non-empty set A to a non-empty set **B** is a subset of the cartesian Product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $A \times B$. The second element is called the image of the first element.

DOMAIN, CO-DOMAIN & RANGE OF A RELATION

<u>Domain</u>: The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R.

<u>Codomain</u>: The whole set B is called the codomain of the relation R.

<u>Range</u>: The set of all second elements in a relation R from a set A to a set B is called the range of the relation R.

NOTE

(i). range ⊂ codomain.

(ii). A relation may be represented algebraically either by **Roster method or by Set- builder method.** (iii). An arrow diagram is a visual representation of a relation. (iv). If n(A) = p and n(B) = q, then $n(A \times B) = pq$. and the total number of relations from A to B is 2^{pq}. (v). A relation R from A to A is also stated as a relation on A.

EXAMPLE:

Let A = {1, 2, 3, 4, 5}. Define a relation R from A to A by

 $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}) : \mathbf{y} = \mathbf{x} + 2\}$

Then, $\mathbf{R} = \{(1, 3), (2, 4), (3, 5)\}.$

domain of R ={1, 2, 3}

Co-domain of R = $\{1, 2, 3, 4, 5\}$

range of **R** = {3, 4, 5}

Example 2:

Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Find the number of relations

from A to B.

Solution:

We have, $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

Since n (A×B) = 6. Therefore, the number of relations from A to B will be $2^6 = 64$.

What have we learned today?

- Ordered pair: A pair of elements grouped together in a particular order.
- Cartesian product: Cartesian product of two sets A and B is

given by $A \times B = \{(a, b): a \in A, b \in B\}$

- $\succ \mathbf{R} \times \mathbf{R} = \{(\mathbf{x}, \mathbf{y}): \mathbf{x}, \mathbf{y} \in \mathbf{R}\} \text{ and } \mathbf{R} \times \mathbf{R} \times \mathbf{R} = \{(\mathbf{x}, \mathbf{y}, \mathbf{z}): \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{R}\}$
- \succ If (a, b) = (x, y), then a = x and b = y.

 \succ If n(A) = p and n(B) = q, then n(A × B) = pq.

 $A \times \varphi = \varphi$

- $\blacktriangleright \text{ In general, } A \times B \neq B \times A.$
- Relation: A relation R from a set A to a set B is a subset of the cartesian product A × B.
- Domain: The domain of R is the set of all first elements of the ordered pairs in a relation R.
- **Range:** The range of the relation **R** is the set of all second
- elements of the ordered pairs in a relation R.

THANK YOU